化工原理课程设计———管壳式换热器一、设计方案的确定二、管壳式换热器的结构三、管壳式换热器设计计算1、换热器类型的选择2、流动空间的选择3、流速的确定4、流动方式的选择 5、流体出口温度的确定 1、换热器类型的选择固定管板式换热器固定管板式换热器管束连接在管板上,管板与壳体焊接。优点:1)传热面积比浮头式换热器大20%-30%;2)旁路漏流较水;3)锻件使用较少;4)没有内漏。缺点:1)不适用于换热管与壳程圆筒的热膨胀变形差很大的场合,管板与管头之间易产生温差应力而损坏;(为了减少热应力,通常在固定管板式换热器中设置柔性元件.如:设置膨胀节.来吸收热膨胀差)2)壳程无法机械清洗,不适用于壳程结垢的场合;3)管子腐蚀后造成连同壳体报废,壳体部件寿命决定于管子寿命,故设备寿命相对较低。适用的场合:1)管壳程金属温差不是很大的场合;2)壳程流体清洁,无需经常抽出管束清洗的场合。浮头式换热器两端管板中只有一端与壳体固定,另一端可相对壳体自由移动,称为浮头。浮头由浮头管板、钩圈和浮头端盖组成,是可拆连接,管束可从壳体内抽出。管束与壳体的热变形互不约束,因而不会主生热应力。优点:1)管束可以抽出,以方便清洗管程、壳程;2)壳程壁与管壁不受温差限制;3)可在高温、高压下工作,一般温度T≤450℃,P ≤6.4MPa;4)可用于结垢比较严重的场合;5)可用于管程腐蚀场合.缺点:1)浮头端易发生内漏;2)金属材料耗量大,成本高20%;3)结构复杂。可用的场合:1)管壳程金属温差很大场合;2)壳程介质易结垢要求经常清洗的场合;U形管式换热器U形换热器的典型结构如图。这种换热器的结构特点是,只有一块管板,管束由多根U形管组成,管的两端固定在同一块管板上,管子可以自由伸缩。当壳体与U形换热管有温差时,不会产生热应力。优点:1)管束可抽出来机械清洗;2)壳体与管壁不受温差限制;3)可在高温、高压下工作,一般适用于T≤500℃,P ≤10MPa;4)可用于壳程结垢比较严重的场合;5)可用于管程易腐蚀场合.缺点:1)在管子的U型处易冲蚀,应控制管内流速;2)管程不适用于结垢较重的场合;可用的场合:1)管程走清洁流体;2)管程压力特别高;3)管壳程金属温差很大,固定管板换热器连设置膨胀节都无法满足要求的场合.2、流动空间的选择3、流速的确定4、流动方式的选择 除逆流和并流之外,在列管式换热器中冷、热流体还可以作各种多管程多壳程的复杂流动。当流量一定时,管程或壳程越多,表面传热系数越大,对传热过程越有利。但是,采用多管程或多壳程必导致流体阻力损失,即输送流体的动力费用增加。因此,在决定换热器的程数时,需权衡传热和流体输送两方面的损失。 5、流体出口温度的确定 若换热器中冷、热流体的温度都由工艺条件所规定,则不存在确定流体两端温度的问题。若其中**体仅已知进口温度,则出口温度应由设计者来确定。例如用冷水冷却一热流体,冷水的进口温度可根据当地的气温条件作出估计,而其出口温度则可根据经济核算来确定:为了节省冷水量,可使出口温度提高一些,但是传热面积就需要增加;为了减小传热面积,则需要增加冷水量。两者是相互矛盾的。一般来说,水源丰富的地区选用较小的温差,缺水地区选用较大的温差。不过,工业冷却用水的出口温度一般不宜高于45℃,因为工业用水中所含的部分盐类(如CaCO3、CaSO4、 MgCO3和MgSO4等)的溶解度随温度升高而减小,如出口温度过高,盐类析出,将形成传热性能很差的污垢,而使传热过程恶化。如果是用加热介质加热冷流体,可按同样的原则选择加热介质的出口温度。二、列管式换热器的结构1、管程结构①换热管规格和排列的选择 换热管直径越小,换热器单位体积的传热面积越大。因此,对于洁净的流体管径可取小些。但对于不洁净或易结垢的流体,管径应取得大些,以免堵塞。考虑到制造和维修的方便,加热管的规格不宜过多。目前我国试行的系列标准规定采用 和 两种规格。 按选定的管径和流速确定管子数目,再根据所需传热面积,求得管子长度。实际所取管长应根据出厂的钢管长度合理截用。我国生产系列标准中管长有1.5m,2m,3m,4.5m,6m和9m六种,其中以3m和6m更为普遍。同时,管子的长度又应与管径相适应,一般管长与管径之比,即L/D约为4~6 管子的排列方式有等边三角形和正方形两种。与正方形相比,等边三角形排列比较紧凑,管外流体湍动程度高,表面传热系数大。正方形排列虽比较松散,传热效果也较差,但管外清洗方便,对易结垢流体更为适用。 ②管板 固定管板式换热器的两端管板采用焊接方法与壳体连接固定。 管板的作用是将受热管束连接在一起,并将管程和壳程的流体分隔开来 。③封头和管箱封头 用于直径小的壳体。管箱 用于直径大的壳体,也叫分
部分内容来源于网络,仅用于学习分享,如发现有侵权,请及时联系删除,谢谢。