碳化硅换热器是一种新型的列管式高温热能回收装置,碳化硅管高温陶瓷换热器其特征是采用管长为380-1600mln的管盘整体一次成型制作的耐火陶瓷换热管件。该换热器砌筑时顶底两层采用浇注密封、内弹簧压紧可吸收热膨胀。
碳化硅换热器
而在陶瓷换热器中碳化硅陶瓷换热器的表现*为突出,主要是它除了具有陶瓷换热器共有的优点如耐高温、耐腐蚀、高温强度高,抗氧化、抗热震性好,寿命长,性能稳定可靠等,同时由于其导热性好,而且高温力学性能(强度、抗蠕变性等)是已知陶瓷材料中*佳的,成为回收高温余热的*佳换热器。
推荐视频:CG Thermal公司的碳化硅陶瓷热交换器,
SiC Ceramic Heat Exchangers from CG Thermal | CERADIR?
「 视频介绍了CG Thermal公司的Umax碳化硅陶瓷换热器,这是一种更高的价值和更持久的产品,可替代活性金属,镍合金和石墨热交换器,在各种严苛的工艺条件下可提供无以伦比的耐腐蚀,耐磨性和热效率。」
碳化硅换热器可以广泛用于冶金、机械、建材、化工等行业,直接回收各种工业窑炉排放的850-1400℃高温烟气余热,以获得高温助燃空气或工艺气体。
从1000℃风冷至室温,反复50次以上不出现裂纹,导热系数与不锈钢等同,在氧化性和酸性介质中具有良好的耐蚀性。
在结构上成功地解决了热补偿和气体密封的问题。该装置传热效率高,节能效果显著,用以预热助燃空气或加热某些过程的工艺气体,可节约一次能源,燃料节约率可达30%以上,并可强化工艺过程,显著提高生产能力。
碳化硅换热器是一种利用碳化硅陶瓷材料作为传热介质的新型换热器。由于碳化硅陶瓷具有耐腐蚀、耐高温、高热导、高硬度、耐磨等优良特性,碳化硅陶瓷换热器适合高温、耐腐蚀环境的使用需求。
研制成的这种装置的换热元件材料系一种新型碳化硅工程陶瓷,它具有耐高温和抗热冲击的优异性能,从 1000 ℃ 风冷至室温,反复50 次以上不出现裂纹;导热系数与不锈钢等同;在氧化性和酸性介质中具有良好的耐蚀性。在结构上成功地解决了热补偿和较好地解决了气体密封问题。该装置传热效率高,节能效果显著,用以预热助燃空气或加热某些过程的工艺气体,可节约一次能源,燃料节约率可达 30 %以上,并可强化工艺过程,显著提高生产能力。
管式碳化硅插入件高温换热器是为代替金属换热器,解决其在高温烟气中长期运行不合理及需要兑冷风,降低使用效果的缺陷而开发研制的新型换热装置。该材质制成的换热器上前在国际上是高温烟气余热回收的换代产品。管式碳化硅插入件高温换热器具有结构紧凑,单位体积换热面积大,采用了内弹簧压紧可吸收热膨胀,在烟气温度1300℃ 时,空气预热温度可达600℃ 以上,换热器的接口部分采用相应的技术,减小振动加强密封以减少空气漏损,空气漏气率低于专业要求5 %以内。
碳化硅换热器是由若干空气通道截面为正方形,烟气通道截面为长方形的碳化硅管呈十字交叉粘在一起,其空气通道和烟气通道隔层为双层,结构牢固,具有较高的机械强度,它解决了波纹型陶瓷换热器隔片开裂易漏风的现象。在空气、烟气通道交接处粘上四个 L 型密封件,外壳用钢板制成,中间用硅酸铝耐火纤维填充,起到密封、隔热和抗机械震动作用。空气进出口圆盘是内接式,冷、热空气在连接管内产生稳流,流速稳定。该换热器能广泛用于各种工业炉窑的烟气回收,是一种理想的节能装置。
碳化硅管高温陶瓷换热器其特征是采用管长为380 -1600mln的管盘整体一次成型制作的耐火陶瓷换热管件,该管件接头盘是方形、八边形或多边形,接头缝是阶梯式或平接头,管件中部设置有耐火圈箍,管件涂釉。该换热器砌筑时顶底两层采用浇注密封。由此构筑的陶瓷换热器气密性高、换热效率高,漏气率至少比原来降低50%以上,可成倍地延长换热器使用寿命,从而延长炉子的使用寿命。
其特征在于陶瓷换热管的接头和管身成一整体,接头处采用“ U ”型槽插入式密封结构,能有效地防止压力较高的被预热介质漏入压力较低的预热介质,可用于钢铁企业的均热炉和大型连续加热炉、有色冶金系统的竖罐炼锌蒸馏炉和塔式锌精馏炉等高温工业炉窑,回收1000-1400℃的烟气余热,空气预热温度可达800℃ ,燃料节约率为40%。
一、碳化硅换热器的优点
1.合成系统**密封技术
在碳化硅换热管与设备外壳的连接部分,采用了自主研发的**密封技术,使我们产品的密封性能**于国内同类产品。
2.高导热率
的热导率几乎与常用的石墨管相当,而远高于其他材料。它的导热系数是钽的两倍,不锈钢的五倍,哈氏合金的十倍,搪玻璃的十五倍。碳化硅换热器的导热具有高效节能的特点,同时对换热面积的需求也大大降低。
3.综合耐腐蚀性
碳化硅是一种强耐腐蚀材料,能耐高浓度硝酸、混酸、碱、氧化剂和有机氯酸盐。碳化硅换热器是传统金属换热器和不锈钢换热器的替代品。
4.干净,耐高温高压
碳化硅是换热管材料中硬度较好的高性能材料,是不含任何浸渍剂的密封体。其硬度比碳化钨高50 埃,因此具有耐磨性和完全的不渗透性。即使在极高的温度和压力下,介质也能以很高的速度和热交换率通过。碳化硅换热管的高硬度也意味着在高纯度应用中不会污染介质,是一种极其洁净的换热管。
5.长寿命
碳化硅换热器的使用寿命是其他换热器产品的数倍,可以保证企业生产的连续运行,大大降低企业生产设备的维护成本,使用效益明显。
随着我们寻求更强大、更小型的电源解决方案,碳化硅 (SiC) 等宽禁带 (WBG) 材料变得越来越流行,特别是在一些具有挑战性的应用领域,如汽车驱动系统、直流快速充电、储能电站、不间断电源和太阳能发电。
这些应用有一点非常相似,它们都需要逆变器(图 1)。它们还需要紧凑且高能效的轻量级解决方案。就汽车而言,轻量化是为了增加续航里程,而在太阳能应用中,这是为了限制太阳能设备在屋顶上的重量。
图 1.典型的 EV 动力总成,其中显示了逆变器
半导体损耗
决定逆变器效率的主要因素之一是所使用的半导体器件(IGBT / MOSFET)。这些器件表现出两种主要类型的损耗:导通损耗和开关损耗。导通损耗与开通状态下的导通电阻 (RDS(ON)) 成 正比,计算方法为漏极电流 (ID) 与漏源电压 (VDS) 的乘积。
将 SiC MOSFET 的 VDS 特性与类似 Si IGBT 的特性(找元器件现货上唯样商城)进行比较,可以观察到,对于给定电 流,SiC 器件的 VDS 通常较低。还值得注意的是,与 IGBT 不同,SiC MOSFET 中的 VDS 与 ID成正比,这意味着它在低电流下的导通损耗会显著降低。这在高功率应用(例如汽车和太阳能)中非常重要,因为它意味着在这些应用中,逆变器在其工作生命周期的大部分时间处于小功率工 况,效率会有显著提高,损耗更低。
图 2.Si IGBT 和 SiC MOSFET 的 VDS 比较
驱动损耗与开关器件所需的栅极电荷 (Qg) 成正比。这是每个开关周期都需要的,使其与开关频率成正比,并且 Si MOSFET 比 SiC 器件更大。设计人员热衷于提高开关频率以减小磁性元件的尺寸、重量和成本,这意味着使用 SiC 器件会带来显著优势。
热管理影响
电源系统中的所有损耗都会变成热量,这会影响元件密度,从而增加终端应用的尺寸。发热组件不仅会升高其自身的内部温度,还会升高整个应用的环境温度。为确保温升不会限制运行甚至导致组件故障,需要在设计中进行热管理。
SiC MOSFET 能够在比硅器件更高的频率和温度下运行。由于它们可以承受更高的工作温度,因此减少了对热管理的需求,可以允许器件本身产生更大的热量。这意味着,将基于硅的设计与等效的基于 SiC 的设计进行比较时,热管理要求要低得多,因为 SiC 系统产生的损耗更低,并且可以在更高的温度下运行。
通过比较,一个典型的 SiC 二极管在 80kHz 下工作时,损耗比同等硅二极管低 73%。因此, 在太阳能应用和电动汽车的大功率逆变器中,SiC 器件的效率优势将对降低电力系统的热管理需 求产生非常显著的影响,可能降低 80% 或更多。
基于SiC的电源系统的总成本
尽管 SiC 器件投入实际使用已经有一段时间了,但人们认为基于 SiC 的设计*终成本将高于硅基设计,因而在某些方面减缓了 SiC 器件的采用速度。然而,若是直接比较硅基器件和SiC 器件的相对成本,而不考虑每种技术对整体系统成本的影响,可能会使设计人员得出错误的结论。
如果我们考虑 30 kW 左右的硅基电源解决方案,用于开关的半导体器件加起来约占物料清单成本的10%。主要的无源元件(电感器和电容器)占剩余成本的大部分,分别为 60% 和 30%。
虽然 SiC 器件的单位成本确实高于等效的硅基器件,但 SiC 器件的性能降低了对电感器和电容器的要求,显著降低了系统的尺寸、重量和成本。**一项就可以将 SiC 的物料清单的总成本低于同等硅基解决方案。然而,正如我们所见,基于 SiC 的解决方案中的热管理成本也明显更低。因此,加上这种成本节约意味着 SiC 设计更高效、更小、更轻,而且一定程度上成本更低。
安森美 (onsemi) *新的 1200 V 和 900 V N 沟道 EliteSiC MOSFET具有低反向恢复电荷的体二极管,可以显著降低损耗,即使在更高的频率下操作也是如此。芯片尺寸小有助于高频操作,减少栅极电荷,减小米勒 (Crss) 和输出 (Coss) 寄生电容,从而减少开关损耗。
这些新器件的 ID 额定电流高达 118 A,可提高整体系统效率并改善EMI,同时允许设计人员使用更少(和更小)的无源元件。如果需要处理更高电流,这些器件可以配置为并联工作,因为它们具有正温度系数而不受温度影响。
主要有两种热管理方法:主动或被动。被动方法使用散热片或其他类似器件(例如热管)将多余的热量从发热器件转移到外壳,进而消散到周围环境中。散热片的散热能力随着尺寸的增加而增加,散热能力与可用的表面积成正比,为了在*小的体积中实现*大的表面积,这通常会引入复杂的设计。
主动散热通常涉及某种形式的降温装置,例如电动汽车应用中的风扇或冷却液。由于它们会产生强制气流,因此它们可以在受限空间内提供更多散热。然而,也有一些明显的缺点,包括风扇可靠性和需要在逆变器外壳上开孔以允许气流流通(这也可能导致灰尘或液体进入)。此外,风扇需要额外的电能才能运行,这会影响整体系统的效率。
总结
电源设计人员面临着提供更高效、更可靠和体积更小的解决方案的挑战,他们正在寻求 SiC 等新技术来帮助他们应对这些挑战并降低总成本。
基于 SiC 的开关器件使设计人员能够让系统在更高的温度和频率下以更低的损耗运行,这是应对这些挑战的关键。此外,这些电气性能优势意味着无源器件的热管理要求和元件值的显著降低,从而进一步降低成本和尺寸/重量。因此,SiC 方案能够以更小的尺寸和更低的成本实现更高的性能水平。
部分内容来源于网络,仅用于学习分享,如发现有侵权,请及时联系删除,谢谢。