欢迎光临无锡市钰婷物资有限公司官方网站!

联系我们
服务热线
0510-85188012
邮箱:491866689@qq.com
地址:无锡市滨湖区振兴路8号
当前位置:首页>>新闻中心
翅片式热交换器.pdf
点击次数:41 更新时间:2024-02-15

  翅片式热交换器

  本发明涉及的是广泛用于空调器或制冷机的冷凝器的翅片式热交换器。

  如图11所示,为了获得较高的性能,在已知的翅片式热交换器作冷凝运行时,制冷剂从进口管1和2流入两个流路,并从出口管8和9流出两个流路,从而制冷剂的流路面积增加,制冷剂的压力损失减小。

  在热交换器作冷凝运行时,热交换器中的制冷剂状态分成过热蒸汽区,汽-液两相区和过冷液体区。在这些区域中,制冷剂具有冷凝潜热的汽-液两相区*有利于热交换。同时,从制冷循环的稳定性和提高制冷效率的角度来看,过冷液体区是*重要的。

  但是,在上述已知的具有两个管路的翅片式热交换器中,由于当前的主要倾向在于节约能源,当热交换器中的制冷剂冷凝温度降低时,热交换器中的制冷剂的冷凝温度和进行热交换的空气的温度之间的温差急剧变小,所以可能过于过冷。如果过于过冷,则在热交换器中对热交换基本没有作用的过冷液体区大大增加,造成热交换能力下降。

  此外,在已知的如图11所示的翅片式热交换器用作冷凝器时,如果为提高空调器或制冷机的工作效率而使冷凝温度下降,使过冷太充分,则制冷剂地过冷液体区就比汽-液两相区小了一个量级,冷凝温度和空气温度之间的温差也就变小。所以,热交换器的性能降低,过冷状态下制冷剂在传热管中流动的距离太长,造成翅片式热交换器总的换热性能大幅度下降。

  同时,如图12A和12B所示,日本专利公开文本No.63-(1988)介绍了一种翅片式热交换器,为了提高换热性能,该热交换器中的每一块细长的矩形翅片11上,相反两面的每一面都有若干穿透的突起部分14a,14b和14c。但是,在这种已有技术的翅片式热交换器中,由于翅片11上的穿透突起部分14a到14c,使得空气流阻变大,所以造成换热能力下降。

  因此,为了增加相同空气容量的换热能力,常用大幅度减小空气流阻而不使换热能力降低太多的方法,日本专利公开文本No.2-(1990)描述了一种翅片式热交换器,如图13A和13B所示,该热交换器中的每一块细长的矩形翅片11的一个面上有若干穿透的突起部分14a,14b和14c,使每一个穿透突起部分14a,14b和14C的宽度约等于穿透突起部分14a到14c之间的横向间隔的三分之一。

  也就是说,将各传热管13分别插入到翅片套12中,如图13A和13B所示,通过对沿翅片11的纵向预定间隔布置在各翅片11上的各孔除去毛边后得到这些套,空气沿图13B的箭头A的方向在各翅片11之间流动。如图13A所示,翅片11的穿透突起部分布置成三排,即**排的两个穿透突起部分14b,第二排的一个穿透突起部分14a和第三排的三个穿透突起部分14c被设置在两个相邻的传热管13之间。每一个穿透突起部分14a到14c的宽度Wf大约为各穿透突起部分14a到14c的横向间隔Wb的三分之一。

  同时,在图13A和13B所示的传统翅片式热交换器中,如果将传热管13排成若干排,在某一排的一个传热管13中流动的制冷剂和对应相邻一排的另一个传热管13中流动的制冷剂之间就有温差,例如在两个相邻传热管13中的至少一个传热管中流动的制冷剂为过冷液体状态或过热气体状态,流过相邻传热管13的制冷剂之间的传热是由大平面的翅底通过热导进行的。所以,即使将传热管如图13A和13B所示在翅片11中排成两排,仍不可能大幅度增加换热能力。

  因此本发明的主要目的在于消除上述已有技术的缺陷,提供一种翅片式热交换器,在该热交换器中,尽管过分过冷,仍可以减少对换热能力无多大帮助的过冷液体区,而且可以增大对换热能力有帮助的汽-液两相区,因此大大提高换热能力。

  本发明的另一个目的是在所提供的翅片式热交换器中,即使冷凝温度降低和过份过冷,换热能力也不会降低,在该热交换器中,即使使用若干排传热管,在某一排的一根传热管中流动的制冷剂和在对应相邻一排的另一根传热管中流动的制冷剂之间通过翅底的热导也会受到限制,因此可以有效地提高由排成若干排的传热管所获得的换热能力。

  为了完成本发明的目的,本发明的翅片式热交换器包括:若干伸长的翅片和若干传热管,这些翅片相隔预定间隔,并彼此相互平行,使空气在相邻的翅片之间沿预定方向流动;这些传热管可以保持制冷剂在里面流过,传热管与翅片正交地插入到这些翅片中,从而在翅片上排成若干排;其中当翅片式热交换器用作冷凝运行时,传热管在制冷剂进口附近设置成两个流路,而在制冷剂出口附近设置成一个流路,使一个流路的传热管约占所有传热管的5-30%。

  通过下面结合附图对优选实施例的描述,本发明的这些目的和特征将会更加清楚。

  图1是本发明**实施例的翅片式热交换器的示意图;

  图2是本发明第二实施例的翅片式热交换器的顶视平面图;

  图3是本发明第三实施例的翅片式热交换器的顶视平面图;

  图4是本发明第四和第五实施例的翅片式热交换器的顶视平面图;

  图5A是本发明第四实施例的图4所示的翅片式热交换器的顶视平面详图;

  图5B是沿图5A的VB-VB线作的剖面图;

  图6A是本发明第五实施例的图4所示的翅片式热交换器的顶视平面详图;

  图6B是沿图6A的VIB-VIB线作的剖面图;

  图7是本发明第六实施例的翅片式热交换器的顶视平面图;

  图8A是图7的翅片式热交换器的顶视平面详图;

  图8B是沿图8A的VIIIB-VIIIB线作的剖面图;

  图9A是本发明第二-六实施例中的翅片式热交换器的翅片结构的顶视平面;

  图9B是沿图9A的IXB-IXB线作的剖面图;

  图10是本发明第二-六实施例的翅片式热交换器的制冷剂流路结构的正视剖面图;

  图11是已有的翅片式热交换器的示意图(已经参考过);

  图12A是已有的另一种翅片式热交换器的顶视平面图(已经参考过);

  图12B是沿图12A的XIIB-XIIB线作的剖面图(已参考过);

  图13A是已有的又一翅片式热交换器的顶视平面图(已经参考过);和

  图13B是沿图13A的XIIIB-XIIIB线作的剖面图(已参考过)。

  在描述本发明的技术方案以前,应当注意的是,对于所有附图来讲,相同的部件用相同的标号表示。

  现在参照附图,图1所示的是本发明**实施例的翅片式热交换器K1。热交换器K1包括若干细长的矩形翅片7,这些翅片按预定间隔设置,并彼此相互平行,使空气沿着箭头A的方向在各相邻翅片7之间流动。有制冷剂在其中流过的传热管3,4和5与翅片7相交地插入到这些翅片中,从而形成若干排,例如两排,使各排传热管基本沿着与箭头A垂直的方向延伸,也就是说,各排传热管基本沿着箭头A的方向彼此分隔开。在热交换器K1作冷凝运行时,制冷剂从两个进口管1和2进入两个流路,并沿箭头方向流动。从进口管1进入到传热管3的一股制冷剂和从进口管2进入到传热管4的另一股制冷剂一起流到部位10的附近,然后从传热管5流入一个流路,*后从出口管6流出。

  按照箭头A的方向,将从传热管5到出口管6的流路设置在传热管各排的上游侧。本发明人发现,一个流路的传热管5到6约占总传热管的5-30%。

  同时,按照箭头A的方向,将进口管1和2设置在传热管各排的下游侧,使它们靠近从传热管5到出口管6的那一段流路。在位置B处将翅片7沿横向分成翅片部分7a和7b。出口管6靠近位置B。

  通过热交换器K1的上述布置,可以得到下面的效果(1)至(5):

  (1)在冷凝运行期间,从进口管1和2流进两个流路并进入传热管3和4的制冷剂一起流到部位10的附近,然后从传热管5中向后流到一段流路中,*后从出口管6流出。由于在冷凝运行期间有一段流路用在制冷剂出口附近,所以经空气冷却以后变成过冷状态的液体制冷剂从两段流路流入到一段流路。所以制冷剂的流路面积减小。因此,由于制冷剂的流速增加,传热速度大幅度增加。因而,对于相同的过冷程度,热交换器K1中对换热基本没有帮助的过冷区变小。因此可以增加热交换器K1中对换热能力有帮助的汽液两相区,由此大大提高换热能力。

  (2)由于从传热管5到出口管6的那一段流路设置在传热管各排的上游侧(沿箭头A的方向而言),所以在冷凝运行期间,通过过冷被冷却到低温的制冷剂部分处在传热管各排的上游侧(沿箭头A的方向而言)。因此,如果让制冷剂沿相反的方向流到两个流路中,则制冷剂的温度梯度增大,从而制冷剂的效率增加,由此提高了换热能力。

  (3)由于两个进口管1和2都处在传热管各排的下游侧(沿箭头A的方向而言),所以在冷凝运行期间达到*高温度的过热制冷剂处在传热管各排的下游侧(沿箭头A的方向而言)。因此,如果使制冷剂沿相反的方向流入到两个流路中,则制冷剂的温度梯度增大,从而制冷剂的效率增加,由此提高了换热能力。

  (4)从传热管5到出口管6的那一段流路设置在传热管各排的上游侧(沿箭头A的方向而言),进口管1和2设置在传热管各排的下游侧(沿箭头A的方向方言)就可以使它们靠近从传热管5到出口管6的那一段流路。所以温度*高的制冷剂部分和温度*低的制冷剂部分彼此靠近。因此,如果使制冷剂沿相反的方向流入到两个流路中,则制冷剂的温度梯度增大,制冷剂的效率增加,从而提高了换热能力。

  (5)由于在位置B处将翅片7沿横向分成翅片部分7a和7b,而且出口管6靠近位置B,所以在热交换器K1中温度*低的出口管6和高温传热管3分别处于翅片部分7a和7b上,而且彼此分开。因此,由于避免了出口管和传热管3之间的热导换热,就减少了热交换器K1的损失,结果大大提高了换热能力。

  下面参照图9A,9B和10描述热交换器K2至K6共同结构。如图9A和9B所示,每一个热交换器K2至K6均包括若干细长的矩形翅片11,这些翅片按预定间隔设置,并彼此相互平行,使空气沿着箭头A的方向在各相邻翅片11之间流动。将各传热管13分别插入到各翅片套12中,通过把每一个翅片11的两排中的沿翅片11的横向按预定间隔分布的孔去除毛边以后便得到这些翅片套。沿翅片11纵向的在每排孔中的各相邻传热管13之间有一组排成三排的穿透突起部,即在各个翅片11的一个面上,例如在各翅片11的与翅片套12相反的面上有**排的一个穿透突起部24a,有第二排的一个穿透突起部24b以及有第三排的两个穿透突起部24c。所以,当穿透突起部以各纵向相邻传热管13之间的中线为界沿横向排成若干排时,靠中线*近的**排的穿透突起部数量*少,随着突起部排远离中线,使该排的突起部数量等于或大于*少数。使每一个穿透突起部24a至24c的宽度Wf大约等于各穿透突起部24a至24c横向之间的间隔Wb的三分之一到一半。使每一个穿透突起部24a至24c的高度h大约等于翅片套12的高度Pf的一半到三分之二,即等于翅片11的间隔。穿透突起部24a有一对支柱25a,穿透突起部24b有一对支柱25b。同时,每一个穿透突起部24c有支柱25c和25d。面对每一个相邻传热管13的支柱25a,25b和25c均按下述方向和位置设置:使它们基本沿着每一个相邻传热管13的外周延伸。远离各相邻传热管13的每个穿透突起部24c的支柱25d基本沿着箭头A的方向延伸。

  图10所示的是热交换器K2至K6中的制冷剂流路的结构。每一个翅片11都有排成两排的翅片套12,每一排有15个翅片套12。每一个翅片11在位置B处以横向分成翅片部分11a和11b。当各个热交换器K2至K6用作冷凝器时,处于过热气体状态的制冷剂从翅片套12各排下游侧(以箭头A的方向而言)的传热管17a和18a流入到两个流路中,并沿着各个箭头方向流入到热交换器中。在流过开始过冷的传热管17b和18b以后,这两股制冷剂一起流到部位10的附近,然后流入一个流路,制冷剂再通过传热管19b从传热管19a流入传热管19c,此时得到进一步冷却,*后从传热管19d流出。将传热管19a至19d设置在翅片套12各排的上游侧(以箭头A的方向而言)。

  也就是说,在全部30个传热管中,将四个传热管19a至19d设置成一个流路,它们约占全部30个传热管的13%(=4/30),而其余的传热管设置成两个流路。本发明人发现,一个流路的传热管19a至19d可以约占全部传热管的5至30%。

  将传热管19a至19d设置在翅片套12各排的上游侧(以箭头A的方向而言),使用作制冷剂出口的传热管19d靠近位置B,在该位置处将翅片11分成翅片部分11a和11b。另一方面,将用作制冷剂进口的传热管17a和18a设置在传热管19a至19d的下游(以箭头A的方向而言)。

  图2所示的是热交换器K2的翅片11。若干切口部分31和33沿着翅片11上的翅片套12各排之间的中线基本顺着纵向延伸,这些切口部分由基本没有宽度的槽口或宽度很小的切槽构成。使每一个切口部分31和33的长度不小于各传热管13的直径,但大致不大于传热管13的纵向间隔的5到6倍。切口部分31和33沿着纵向在整个翅片11上延伸,这些切口部分通过未切开部分32彼此对齐,使它们在一条直线上。每个未切开部分32的长度不大于传热管13的直径的一半。

  更具体地说,在热交换器K2中,使切口部分31的长度和未切开部分32的长度的总和两倍于传热管13的纵向间隔,而使切口部分33的长度和未切开部分32的长度的总和三倍于传热管13的纵向间隔。由于在一排上有15个传热管13,而翅片11包括反置的边缘部分,这些边缘的总长度等于两根传热管13的纵向间隔,该纵向间隔指的是翅片11的相反两端的两个传热管13的中心距离,翅片11的长度等于传热管13的15(=14+1)个纵向间隔的总和。所以,翅片11有六个切口部分31,这表示12(=6×2)个传热管13的纵向间隔,而只有一个切口部分33,这表示三个传热管13的纵向间隔,即12+3=15。

  切口部分33的一端34靠近与传热管19d相邻的位置B。比切口部分31长的切口部分33处在传热管19a至19d的下游(以箭头A的方向而言)。

  图3所示的是热交换器K3的翅片11。翅片11在纵向沿线35切成两半。

  下面参照图4,5A和5B描述热交换器K4的翅片11。在翅片11的一个面上设置的两个穿透突起部分36的高度h大约等于翅片套的高度Pf的一半到三分之二,每一个突起部分的宽度都与穿透突起部分24a至24c的宽度Wf一样,这里所述的翅片11的一个面与有穿透突起部分24a至24c的面相同。假如过冷液体状态或过热气体状态的制冷剂流过一排上的传热管13,则每一个穿透突起部分36均位于一排上的一个传热管13和另一排上的与之相邻的传热管13之间的中部附近。每一个穿透突起部分36均有一个与另一排上的传热管13相邻的支柱37c和一个远离另一排上的传热管13的支柱37d。支柱37c的方向和位置的选择应使它基本沿着另一排上的传热管13的外周延伸,而支柱37d基本沿着箭头A的方向延伸。

  下面参照图4,6A和6B描述热交换器K5的翅片11。在翅片11的一个面上设置的两个穿透突起部分38的高度h大约等于翅片套的高度Pf的一半到三分之二,每一个突起部分的宽度都与穿透突起部分24a至24c的宽度Wf一样,这里所述的翅片11的一个面与有穿透突起部分24a至24c的面相对。假如过冷液体状态或过热气体状态的制冷剂流过一排上的传热管13,则每一个穿透突起部分38均位于一排上的一个传热管13和另一排上的与之相邻的传热管13之间的中部附近。每一个穿透突起部分38均有一个与另一排上的传热管13相邻的支柱39c和一个远离另一排上的传热管13的支柱39d。支柱39c的方向和位置的选择应使它基本沿着另一排上的传热管13的外周延伸,而支柱37d基本沿着箭头A的方向延伸。

  下面参照图7,8A和8B描述热交换器K6。在翅片11的一个面上设置有一个穿透突起部分44a,一个穿透突起部分44b和两个穿透突起部分44c,各个突起部分的高度h大约等于翅片套12的高度Pf的一半到三分之二,每一个突起部分的宽度都与穿透突起部分24a至24c的宽度Wf一样,这里所述的翅片11的一个面与有穿透突起部分24a至24c的面相对,使这些突起部分处在传热管13的附近,传热管中有过冷液体状态或过热气体状态的制冷剂流过。穿透突起部分44a,44b和44c及穿透突起部分24a,24b和24c交替横向地设置在翅片11的相对的两面,使相关的一个穿透突起部分44a至44c处在两个相邻的穿透突起部分24a至24c之间的中部。穿透突起部分44a有一对支柱45a,每一个支柱都对着传热管13,穿透突起部分44b有一对支柱45b,每一个支柱都对着传热管13,每一个穿透突起部分44c有一个对着传热管13的支柱45c和一个远离传热管13的支柱45d。支柱45a,45b和45c的方向和位置的选择应使它们基本沿着传热管13的外周延伸。另一方面,每一个穿透突起部分44c的支柱45d基本沿着箭头A的方向延伸。

  同时,在热交换器K4至K6中,穿透突起部分36,38和44a至44c均处在传热管13的附近,传热管中有过冷液体状态或过热气体状态的制冷剂在里面流动,但这些突起部分也可以处在翅片11的任何区域中。

  利用热交换器K2至K6的上述结构,可以获得如下效果(1)至(17):

  (1)在热交换器K2到K6中,只在翅片11的一个面上沿着翅片11的纵向在各相邻的传热管13之间设置有若干穿透突起部分24a至24c,而且使每个穿透突起部分24a至24c的宽度Wf均为穿透突起部分24a至24c的横向间隔Wb的三分之一到一半。翅片11在位置B处沿横向分成翅片部分11a和11b,将里面有制冷剂流动的传热管13插入到翅片11中。当热交换器K2用作冷凝器时,将用作制冷剂出口的传热管19a至19d设置在一个流路中,使它们约占全部传热管的530%,而其余的传热管设置成两个流路。将一个流路的传热管19a至19d设置在传热管各排的*上游的一排中(以箭头A的方向而言),将用作制冷剂出口的传热管19d设置在把翅片11分成翅片部分11a和11b的位置B的附近。同时,将用作制冷剂进口的传热管17a和18a设置在一个流路的传热管19a至19d的下游处(以箭头A的方向而言),也可以将它们设置在传热管19a至19d附近的*下游的一个传热管排中(以箭头A的方向而言)。当过冷液体状态或过热气体状态的制冷剂流过一排中的一根传热管时,将一个绝热设备设置在翅片11一个面上的一个传热管和另一排上的与之相邻的一个传热管之间的中部附近。

  利用热交换器K2至K6的上述结构,将里面有过冷液体状态的制冷剂流过的传热管设置在一个流路中。所以,即使设定的冷凝温度很低,过冷度增加,传热速度也会大幅度增加,而不会造成制冷剂有太大的流阻,大大减少了一排上的传热管19d与另一排上的相邻的传热管之间通过翅片11由热导进行的换热。

  将里面有过冷液体状态的制冷剂流过的传热管19a至19d设置成一个流路,并将它们设置在*上游的一排传热管中,将里面有过热气体状态的制冷剂流过的传热管17a和18a设置在传热管19a至19d的下游,或将它们设置在传热管19a至19d附近的*下游的一排传热管中。所以由此引起制冷剂向两个相反的方向流动,这样就可以提高换热能力。通过沿翅片11横向(即沿翅片11上的箭头A的方向)在相邻的传热管之间的中部设置绝热设备,就可以抑制住分别流过相邻传热管的制冷剂之间经翅底造成的热导现象,从而就可以提高排成若干排的传热管之间的换热能力。

  (2)在热交换器K2中,沿着翅片11的纵向延伸的切口部分31和33作为绝热设备。通过这种安排,就可以抑制住流过横向相邻的传热管13的制冷剂之间经翅底造成的热导现象,通过在热边界层产生的边界效应就可以提高传热性能,这种边界效应是由切口部分31和33产生的。

  (3)在热交换器K2中,使切口部分31和33的长度不小于传热管13的直径,但不大于各传热管13的纵向间隔的5至6倍。通过这种安排,就可以有效地抑制住流过横向相邻的传热管13的制冷剂之间经翅底造成的热导现象。

  (4)在热交换器K2中,切口33的端部34靠近与传热管19d相邻的位置B。通过这种安排,由于切口部分31和33牢牢地处在用作*低温度制冷剂出口的传热管19d和横向相邻的传热管13之间,从而就可以*有效地抑制住横向相邻的传热管13之间经翅底造成的热导。

  (5)在热交换器K2中,若干切口31和33彼此通过未切开部分32沿着翅片11的纵向在一条直线上延伸。通过这种安排,利用在热边界层产生的边界效应就可以进一步提高传热性能,这种边界效应是由切口部分31和33产生的。

  (6)在热交换器K2中,若干切口31和33彼此通过未切开部分32沿着翅片11的纵向在一条直线上从翅片11的一个端部延伸到另一个端部。通过这种安排,利用在热边界层产生的边界效应就可以进一步提高传热性能,这种边界效应是由切口部分31和33产生的。

  (7)在热交换器K2中,使未切开部分32的长度不大于传热管13的直径的一半。通过这种安排,就可以抑制住导致降低换热能力的流过横向相邻的传热管13的制冷剂之间经未切开部分32造成的热导现象。

  (8)在热交换器K2中,使每个切口部分31的长度和每个未切开部分32的长度大体相同。如果翅片11的总长度在被各个切口部分31的总长和各个未切开部分32的总长划分以后还有剩余的话,就使单个的切口部分33的长度比每个切口部分31的长度长,所长的长度就是所述的剩余部分。通过这种安排,如果反复利用等长切口部分31的冲模加工翅片11的话,只要在翅片11的一个位置,沿着翅片11的纵向使翅片11移动一个相应于剩余部分的距离,对翅片11冲压两次,就可以使获得的切口部分33比每一个切口部分31长所述的剩余部分。从而就可以容易地得到翅片11,在该翅片中,若干切口31和33彼此通过未切开部分32沿着翅片11的纵向在一条直线上从翅片11的一个端部延伸到翅片11的另一个端部。

  (9)在热交换器K2中,将用作制冷剂出口的传热管19a至19d设置成一个流路,将比每一个切口部分31长的切口部分33设置在传热管19a至19d的下游(以箭头A的方向而言)附近。通过这种安排,就可以有效地对里面有过冷液体状态的制冷剂流动的传热管19a至19d和横向相邻的传热管13之间进行绝热。

  (10)在热交换器K3中,沿着用作绝热设备的线35将翅片11纵向地分成两半,通过这种安排,就可以抑制住流过横向相邻的传热管13的制冷剂之间经翅底造成的热导现象,并利用在热边界层产生的边界效应可以提高传热性能,这种边界效应是由线35产生的。

  (11)在热交换器K4中,每一个穿透突起部分36的宽度和穿透突起部分24a至24c的宽度Wf相同,该穿透突起部分36作为翅片11的与有穿透突起部分24a至24c的面为同一面上的绝热设备。通过这种安排,就可以抑制住流过横向相邻的传热管13的制冷剂之间经翅底造成的热导现象,并利用在热边界层产生的边界效应提高传热性能,这种边界效应是由穿透突起部分36产生的。由于所有的穿透突起部分24a至24c和36都在翅片11的同一面上,因而可以方便地对翅片11的冲模进行维修和保养。

  (12)在热交换器K5中,每一个穿透突起部分38的宽度和穿透突起部分24a至24c的宽度Wf相同,该穿透突起部分38作为翅片11的与有穿透突起部分24a至24c的面为相反面上的绝热设备。通过这种安排,就可以抑制住流过横向相邻的传热管13的制冷剂之间经翅底造成的热导现象,并利用在热边界层产生的边界效应提高传热性能,这种边界效应是由穿透突起部分38产生的。通过改变翅片11的冲模就可以容易地获得一个能在翅片11的两个相反的面上交替制得若干穿透突起部分的翅片11的冲模。

  (13)在热交换器K6中,有若干穿透突起部分44a至44c,每一个穿透突起部分44a至44c的宽度和穿透突起部分24a至24c的宽度Wf相同,这些穿透突起部分作为翅片11的与有穿透突起部分24a至24c的面为相反面上的绝热设备,使穿透突起部分44a至44c和穿透突起部分24a至24c沿横向交替地设置在翅片11的两个相反的面上。将相应的一个穿透突起部分44a和44b设置在穿透突起部分24a至24c的两个相邻突起部分之间的中部。通过这种安排,就可以抑制住流过横向相邻的传热管13的制冷剂之间经翅底造成的热导现象,并利用在热边界层产生的边界效应提高传热性能,这种边界效应是由穿透突起部分24a至24c和44a至44c产生的。

  (14)在热交换器K2K6中,穿透突起部分24a至24c,36,38和44a至44c的高度h大约为翅片套12的高度Pf的一半至三分之二。通过这种安排,就可以使各翅片11之间有均匀的速度分布,并可以减少空气流阻。

  (15)在热交换器K2K6中,当将穿透突起部分24a至24c,36,38和44a至44c从纵向相邻的传热管13之间的中线开始沿横向排成若干排时,离中线*近的**排的穿透突起部分的数量*少,随着剩余各排远离中线,使这些剩余各排的穿透突起部分的数量等于或逐渐大于上述的*少数量。通过这种安排,空气在下游区域(以箭头A的方向而言)产生局部速度分布的可能性很小,所以能降低气流的噪声。

  (16)在热交换器K2K6中,将穿透突起部分24a至24c,36,38和44a至44c设置在纵向相邻的传热管13之间,穿透突起部分24a至24c,36,38和44a至44c的各个支柱25a至25c,37c,39c和45a至45c与各纵向相邻传热管13的任一管相邻,各支柱的方向和位置的选择应使它基本沿着各纵向相邻传热管13的任一管的外周延伸。通过这种安排,减少了传热管13下游产生的死水区,并可以增加有效传热面积。此外,由于从各传热管13到穿透突起部分的各支柱之间的距离较小,翅片11的效率就高。由于穿透突起部分24a至24c,36,38和44a至44c的总长度较大,所以就可以保证具有使热边界层的边界效应非常明显的宽阔区域,由此产生非常好的传热性能。

  (17)在热交换器K2K6中,穿透突起部分24c,36,38和44c的各个支柱25d,37d,39d和45d远离各纵向相邻传热管13,使各支柱基本沿着箭头A的方向延伸。通过这种安排,使空气流转化成流线性流,因此,在不增加很多气流阻力的情况就能减少气流的噪声。

部分内容来源于网络,仅用于学习分享,如发现有侵权,请及时联系删除,谢谢。